Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)

Problem Sheet - 18

Summary - Important Facts about Determinants

1. Label the following statements as true or false.
(a) The determinant of a square matrix may be computed by expanding the matrix along any row or column.
(b) In evaluating the determinant of a matrix, it is wise to expand along a row or column containing the largest number of zero entries.
(c) If two rows or columns of A are identical, then $\operatorname{det}(A)=0$.
(d) If B is a matrix obtained by interchanging two rows or two columns of A, then $\operatorname{det}(B)=$ $\operatorname{det}(A)$.
(e) If B is a matrix obtained by multiplying each entry of some row or column of A by a scalar, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(f) If B is a matrix obtained from A by adding a multiple of some row to a different row, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(g) The determinant of an upper triangular $n \times n$ matrix is the product of its diagonal entries.
(h) For every $A \in M_{n \times n}(F), \operatorname{det}\left(A^{t}\right)=-\operatorname{det}(A)$.
(i) If $A, B \in M_{n \times n}(F)$, then $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
(j) If Q is an invertible matrix, then $\operatorname{det}\left(Q^{-1}\right)=[\operatorname{det}(Q)]^{-1}$.
(k) A matrix Q is invertible if and only if $\operatorname{det}(Q) \neq 0$.
2. Evaluate the determinant of the following 2×2 matrices.
a) $\left(\begin{array}{rr}4 & -5 \\ 2 & 3\end{array}\right)$
b) $\left(\begin{array}{rr}-1 & 7 \\ 3 & 8\end{array}\right)$
c) $\left(\begin{array}{cc}2+i & -1+3 i \\ 1-2 i & 3-i\end{array}\right)$
d) $\left(\begin{array}{cc}3 & 4 i \\ -6 i & 2 i\end{array}\right)$
3. Evaluate the determinant of the following matrices in the manner indicated.
а) $\left(\begin{array}{rrr}0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right)$
along the first row
b) $\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & 5 \\ -1 & 3 & 0\end{array}\right)$
along the first column
c) $\left(\begin{array}{rrr}0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right)$
d) $\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & 5 \\ -1 & 3 & 0\end{array}\right)$ along the second column along the third row
e) $\begin{gathered}\left(\begin{array}{ccc}0 & 1+i & 2 \\ -2 i & 0 & 1-i \\ 3 & 4 i & 0\end{array}\right) \\ \text { along the third row }\end{gathered}$
f) $\left(\begin{array}{ccc}i & 2+i & 0 \\ -1 & 3 & 2 i \\ 0 & -1 & 1-i\end{array}\right)$ along the third column
g) $\left(\begin{array}{rrrr}0 & 2 & 1 & 3 \\ 1 & 0 & -2 & 2 \\ 3 & -1 & 0 & 1 \\ -1 & 1 & 2 & 0\end{array}\right)$
along the fourth column
h) $\left(\begin{array}{rrrr}1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ 2 & -5 & -3 & 8 \\ -2 & 6 & -4 & 1\end{array}\right)$ along the fourth row
4. Evaluate the determinant of the following matrices by any legitimate method.
a) $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
b) $\left(\begin{array}{rrr}-1 & 3 & 2 \\ 4 & -8 & 1 \\ 2 & 2 & 5\end{array}\right)$
c) $\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 2 & -5 \\ 6 & -4 & 3\end{array}\right)$
d) $\left(\begin{array}{ccc}1 & -2 & 3 \\ -1 & 2 & -5 \\ 3 & -1 & 2\end{array}\right)$
e) $\left(\begin{array}{ccc}i & 2 & -1 \\ 3 & 1+i & 2 \\ -2 i & 1 & 4-i\end{array}\right)$
f) $\left(\begin{array}{ccc}-1 & 2+i & 3 \\ 1-i & i & 1 \\ 3 i & 2 & -1+i\end{array}\right)$
g) $\left(\begin{array}{rrrr}1 & 0 & -2 & 3 \\ -3 & 1 & 1 & 2 \\ 0 & 4 & -1 & 1 \\ 2 & 3 & 0 & 1\end{array}\right)$
h) $\left(\begin{array}{rrrr}1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15\end{array}\right)$
5. Suppose that $M \in M_{n \times n}(F)$ can be written in the form

$$
M=\left(\begin{array}{cc}
A & B \\
O & I
\end{array}\right)
$$

where A is a square matrix. Prove that $\operatorname{det}(M)=\operatorname{det}(A)$.
6. Prove that if $M \in M_{n \times n}(F)$ can be written in the form

$$
M=\left(\begin{array}{ll}
A & B \\
O & C
\end{array}\right)
$$

where A and C are square matrices, then $\operatorname{det}(M)=\operatorname{det}(A) \cdot \operatorname{det}(C)$.

