Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 18

Summary – Important Facts about Determinants

- 1. Label the following statements as true or false.
 - (a) The determinant of a square matrix may be computed by expanding the matrix along any row or column.
 - (b) In evaluating the determinant of a matrix, it is wise to expand along a row or column containing the largest number of zero entries.
 - (c) If two rows or columns of *A* are identical, then det(A) = 0.
 - (d) If *B* is a matrix obtained by interchanging two rows or two columns of *A*, then det(B) = det(A).
 - (e) If *B* is a matrix obtained by multiplying each entry of some row or column of *A* by a scalar, then det(B) = det(A).
 - (f) If *B* is a matrix obtained from *A* by adding a multiple of some row to a different row, then det(B) = det(A).
 - (g) The determinant of an upper triangular $n \times n$ matrix is the product of its diagonal entries.
 - (h) For every $A \in M_{n \times n}(F)$, $det(A^t) = -det(A)$.
 - (i) If $A, B \in M_{n \times n}(F)$, then $det(AB) = det(A) \cdot det(B)$.
 - (j) If *Q* is an invertible matrix, then $det(Q^{-1}) = [det(Q)]^{-1}$.
 - (k) A matrix *Q* is invertible if and only if $det(Q) \neq 0$.
- 2. Evaluate the determinant of the following 2×2 matrices.

a) $\begin{pmatrix} 4 & -5 \\ 2 & 3 \end{pmatrix}$	b) $\begin{pmatrix} -1 & 7 \\ 3 & 8 \end{pmatrix}$
c) $\begin{pmatrix} 2+i & -1+3i \\ 1-2i & 3-i \end{pmatrix}$	d) $\begin{pmatrix} 3 & 4i \\ -6i & 2i \end{pmatrix}$

3. Evaluate the determinant of the following matrices in the manner indicated.

	0	1	2 \	(1 0	2 `	١
a)	-1	0	-3	b)	0 1	5	
	2	3	0 /	(-	-1 3	0)
along the first row			first ro	v alon	along the first column		

c)
$$\begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix}$$

along the second column
e) $\begin{pmatrix} 0 & 1+i & 2 \\ -2i & 0 & 1-i \\ 3 & 4i & 0 \end{pmatrix}$
along the third row
f) $\begin{pmatrix} i & 2+i & 0 \\ -1 & 3 & 2i \\ 0 & -1 & 1-i \end{pmatrix}$
along the third row
g) $\begin{pmatrix} 0 & 2 & 1 & 3 \\ 1 & 0 & -2 & 2 \\ 3 & -1 & 0 & 1 \\ -1 & 1 & 2 & 0 \end{pmatrix}$
along the fourth column
h) $\begin{pmatrix} 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ 2 & -5 & -3 & 8 \\ -2 & 6 & -4 & 1 \end{pmatrix}$

4. Evaluate the determinant of the following matrices by any legitimate method.

a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

b) $\begin{pmatrix} -1 & 3 & 2 \\ 4 & -8 & 1 \\ 2 & 2 & 5 \end{pmatrix}$
c) $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -5 \\ 6 & -4 & 3 \end{pmatrix}$
d) $\begin{pmatrix} 1 & -2 & 3 \\ -1 & 2 & -5 \\ 3 & -1 & 2 \end{pmatrix}$
e) $\begin{pmatrix} i & 2 & -1 \\ 3 & 1+i & 2 \\ -2i & 1 & 4-i \end{pmatrix}$
f) $\begin{pmatrix} -1 & 2+i & 3 \\ 1-i & i & 1 \\ 3i & 2 & -1+i \end{pmatrix}$
g) $\begin{pmatrix} 1 & 0 & -2 & 3 \\ -3 & 1 & 1 & 2 \\ 0 & 4 & -1 & 1 \\ 2 & 3 & 0 & 1 \end{pmatrix}$
h) $\begin{pmatrix} 1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -20 & 31 \\ -4 & 9 & -14 & 15 \end{pmatrix}$

5. Suppose that $M \in M_{n \times n}(F)$ can be written in the form

$$M = \begin{pmatrix} A & B \\ O & I \end{pmatrix},$$

where *A* is a square matrix. Prove that det(M) = det(A).

6. Prove that if $M \in M_{n \times n}(F)$ can be written in the form

$$M = \begin{pmatrix} A & B \\ O & C \end{pmatrix},$$

where *A* and *C* are square matrices, then $det(M) = det(A) \cdot det(C)$.
